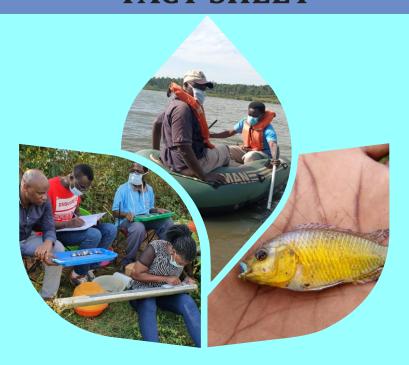
CONCLUSION & RECOMMENDATIONS

- † Results indicate that the surveyed dams have a Carrying capacity of about 72,894 mt of fish. Masinga dam has the highest Carrying capacity followed by Kamburu, Kindaruma, and Gitaru with 51,217, 15,135, 2,409, and 2,351 mt, respectively.
- † All the four dams are in Embu County were within the River Tana system. Other dams with substantial carrying capacity are Kiserian (522.95 mt) and Chinga (396.90 mt) in Kajiado a n d Nyeri Counties respectively.
- † In the Western Kenya region, Yao Kosiga Dam in Homa Bay County exhibited the highest potential (47 mt). This was followed by Olasi (41.98 mt) and Karamu (39.46) both located in Migori County.

Central Region									
County S	5WB/Dam	Size (ha)	SI	TSI	Carrying capacity (mt)	Remarks			
Embu I	thatha	3.3	0.47	0.54	4.02019	Low			
Embu G	itaru	290	0.55	0.54	2351,35	High			
Embu K	Cindaruma	1000	0.51	0.45	2409.75	High			
Embu K	Camburu	1125	0.54	0.55	15135.9	High			
Embu A	Nasinga	12000	0.52	0.48	51217.9	High			
Kajiado C	Olmirrui	0.1	0.45	0.58	0.2349	Low			
Kajiado I	yarat	3	0.4	0.66	8.316	Low			
Kajiado E	nkaroni	5	0.44	0.63	12,474	Medium			
Kajiado C	Olokii	10	0.47	0.66	23.265	Medium			
Kajiado K	(iserian	41.8	0.48	0.48	522,948	High			
Kiambu K	Cimunyu	0.27	0.51	0.52	0.64444	Low			
Kiambu T	Twiga .	3	0.48	0.47	12.5885	Medium			
Kiambu R	Rungiri	3	0.51	0.49	14.6192	Medium			
Kiambu T	rigoni .	10.19	0.4	0.64	19.5648	Medium			
Kirinyaga K	Kangai	0.53	0.55	0.52	1,09138	Low			
Kirinyaga T	Thi ba	0.75	0.61	0.65	1,33819	Low			
Kirinyaga A	Ahiti Ndomba	2	0.48	0.43	5.44896	Low			
	Njuki-ini	2	0.52	0.51	6.84216	Low			
Kirinyaga K	Carura	10	0.52	0.52	13.7904	Medium			
	Katangi	5	0.47	0.55	15.8978	Medium			
	Nuthetheni	10	0.51	0.57	27.9072	Medium			
Machakos M	Auoni	13	0.48	0.53	29.7648	Medium			
Machakos K	(wale	10	0.47	0.65	32.0775	Medium			
Meru K	Caguru	1,5	0.46	0.46	1,4283	Low			
Meru N	Nguthuru Laingo	6.5	0.53	0.54	8.37135	Low			
	Ontulili	68	0.53	0.42	68.1156	Medium			
Meru N	Vkunga	68	0.55	0.41	69.003	Medium			
	Ciboya	0.85	0.42	0.33	0.70686	Low			
	Ciunyu	0.85	0.51	0.55	0.71528	Low			
	Sai kuyu	0.59	0.54	0.43	0.90419	Low			
	Chamara	2	0.57	0.31	2,1204	Low			
. ,	Buara	2	0.54	0.58	3.7584	Low			
	lohwe	3	0.47	0.4	6.0912	Low			
. ,	Njengu	9	0.57	0.42	20.0378	Medium			
-	hinga	175	0.54	0.5	396.9	High			
	atonto	0.75	0.47	0.14	0.2961	Low			
	Ndetha	0.75	0.47	0.59	1.24785	Low			

- † The central region had a potential of 72,447 mt while that of western region was only 447 mt. The comparatively high potential in the central region is attributable to the huge hydro-electric dams.
- † Given the shallow depths of all the dams in the western region, restocking mainly with endemic species with limited or no supplementary feeding is recommended. The same is recommended for dams with low carrying capacities.
- † Cage culture is recommended for SWBs with strong community associations to provide security and farm inputs from nearby hatcheries.
- † Most of the surveyed dams had multiple purposes, a recipe for conflict among resource users.
- † To avoid conflict and improve performance, a SWBs strategy needs to be developed which involves: investment under the blue economy precipice; optimize operation by re-defining the dam objectives; economic analysis, rehabilitation, rebranding and upgrade; dam safety; sedimentation; and research.


KMFRI-ABDP-SWBs Fact Sheet, 2020. The socio-ecological study of selected SWBs in order to establish their carrying capacity for fisheries and aquaculture production.

(ABDP), IFAD Building, Kamakwa Road (Opp. Nyeri Club), P.O. Box 904-10100, Nyeri.

AQUACULTURE BUSINESS DEVELOPMENT PROGRAMME (ABDP)

FACT SHEET

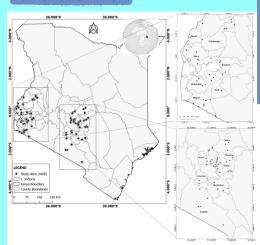
The socio-ecological studies of selected Small Water Bodies (SWBs, dams and reservoirs) in order to establish their carrying capacity for fisheries and aquaculture production

November 2020

BACKGROUND INFORMATION

Small water bodies (SWBs) remain among the least investigated part of the water environment and are largely excluded from fisheries management planning. Understanding SWBs carrying capacity will open an investment paradigm towards

increased food and energy production.


Carrying capacity (metric tonnes, mt) refers to the ability of the environment to accommodate a particular activity or rate of activity without unacceptable impact.

Central region is adorned with several natural springs, rivers, expansive hydroelectric dams and a dense human population which provide huge potential for fish culture and market.

Warm temperatures in the western region coupled with an established fish market within the Lake Victoria Basin front this region as most suitable for sustainable dam fisheries production.

STUDY SITES

The study was conducted in 8 counties in Central (Nyeri, Kirinyaga, Meru, Tharaka Nithi, Embu, Kiambu, Kajiado, and Machakos) and 7 counties in Western (Migori, Kisii, Homabay, Kisumu, Siaya, Busia, and kakamega) Kenya Regions.

SPECIES CAPTURED

Haplochromines, Crayfish, Tilapia, Cat fish, Red-finned barbus, Mosquito fish, Labeo, Carps and Mudfish

ACKNOWLEDGMENTS

We wish to thank IFAD and GoK through ABDP for funding the expedition. We also wish to thank all the KMFRI, Kisumu, KeFS, County Programme Coordinators (CPCs) and Directors, County administrative officers and dam management units for their valuable contributions.

CONTRIBUTIONS

(KMFRI): Christopher Mulanda Aura, Chrisphine S. Nyamweya, Horace Owiti, Collins Ongore, Fredrick Guya, Veronica Ombwa, Nicholas Gichuru, Monica Owili, Patrick Otuo, Jared Babu, Venny Mziri, Zachary Ogari, John Ouko, Josephat Mwanchi. (ABDP): Ruth Lewo Mwarabu, Kelly Owillah

METHODOLOGY OF STUDY

The dam morphology, ecological integrity, food availability and quality and socio-economics indicators of the communities are studied in order to establish suitability and fisheries carrying capacity of the dams. The dam morphology, ecological integrity, food availability and quality and socio-economics indicators of the communities were studied in order to establish suitability and fisheries carrying capacity of the dams.

Carrying capacity of SWBs was calculated using socioeconomic index (SI), and trophic status index (TSI).

A composite Socioeconomics Index (SI) is calculated as a measure of the general socioeconomics carrying capacity acceptable for any fisheries development interventions in the SWBs. This percentage score is derived from weighted averages of the specific ordinal scores subject to the Likert scale ratings of various socioeconomics perception indicators.

FINDINGS

Western Region

County	SWB/Dam	Size (ha)	SI	TSI	Carrying capacity (mt)	Remarks
Busia	Changara	0.84	0.51	0.65	3.34152	Low
Busia	Namonye	5	0.41	0.54	6.642	Low
Busia	Buhuyi	5	0.47	0.576	8.1216	Low
Busia	Namalenga	8.5	0.56	0.6	21.42	Medium
Busia	Munana	10	0.51	0.54	24.786	Medium
Homabay	Pap Orage	1	0.52	0.66	1.5444	Low
Homabay	Kobodo	2.5	0.41	0.54	3.321	Low
Homabay	Ramula	3	0.56	0.6	4.536	Low
Homabay	Kouma	1.8	0.38	0.5	5.13	Low
Homabay	Yongo	8	0.5	0.58	10.44	Medium
Homabay	Konyango	7	0.55	0.64	11,088	Medium
Homabay	Oseno	20	0.54	0.58	37.584	Medium
Homabay	Yao Kosiga	8	0.48	0.68	47.0016	Medium
Kakamega	Mumonyonzo	1.5	0.5	0.67	1.5075	Low
Kakamega	X-Rasa	2	0.49	0.6	2.646	Low
Kakamega	Lugulu	1,4	0.45	0.62	3.5154	Low
Kakamega	Lumino	7	0.48	0.62	6.2496	Low
Kakamega	Musembe	6	0.53	0.59	16.8858	Medium
Kisii	Ibeno	2	0.47	0.73	2.0586	Low
Kisumu	Kere	0.26	0.48	0.61	0.34258	Low
Kisumu	Huma	1	0.48	0.53	0.7632	Low
Kisumu	Buoye	0.8	0.44	0.59	0.93456	Low
Kisumu	Нејоре	0.5	0.6	0.66	1.188	Low
Migori	Konyona	0.25	0.43	0.66	0.4257	Low
Migori	Gwitembe	1	0.49	0.57	1.25685	Low
Migori	Mahena	1	0.47	0.65	1.833	Low
Migori	Siabai	3	0.49	0.62	2.7342	Low
Migori	Silanga	6	0.49	0.51	8.9964	Low
Migori	Silanga Mubachi	11	0.49	0.61	19.7274	Medium
Migori	Nyamome	8	0.51	0.6	25.704	Medium
Migori	Karamu	18	0.63	0.58	39.4632	Medium
Migori	Olasi	20	0.53	0.66	41.976	Medium
Siaya	Nyadong	2	0.45	0.56	1,512	Low
Siaya	Nyagoko	8.6	0.46	0.68	12,1054	Medium
Siaya	Ochot	11	0.48	0.48	19.008	Medium
Siaya	Mauna	15	0.54	0.51	24.786	Medium
Siaya	Uranga	11	0.51	0.52	26.2548	Medium

LESSONS LEARNT

Fisheries: The performance of tilapia and catfish species were much better in warmer areas such as the Western region and drier parts of Central region than the cooler areas mostly found in the Central region.

Ecology: Productivity indicators in the newly formed dams were relatively low, although the water quality looked very promising for fish culture.

Aquaculture: While many dams were found suitable for various scales of aquaculture production, the cages need to be set with adequate scientific guidance and adherence to set regulations in order to preserve the integrity of the dam's ecology.

Socio-economics: There is need to adapt fisheries development to the socio-economic dynamics of the dam's location such as local culture, market niche and technological edge.